
Chapter 5

Différentes Stratégies de

Segmentation Basées sur les

Level-Sets et le Fast-Marching

Résumé — En dépit de beaucoup d’avantages, les Level-Sets souffrent de
sérieux inconvénients quand on les comparent à des représentations explicites ou
paramétrées des surfaces actives. Dans ce chapitre, nous allons essayer de fournir
une réponse à plusieurs de ces problèmes.
En ce qui concerne le manque d’interactivité, nous montrons comment implémenter
quelques techniques d’interaction avec la surface implicite en section 5.1.
Par la suite nous présentons en section 5.2 une modification des forces de “région”
sur lesquelles nous nous appuierons dans les applications.
Le coût de la segmentation d’une surface peut parfois être exhorbitant, lorsqu’on
rajoute une dimension au problème comme c’est le cas avec les Level-Sets . Nous
allons utiliser le Fast-Marching pour fournir une initialisation rapide et précise pour
que le modèle plus complexe des Level-Sets n’ait besoin que de quelques itérations
pour converger vers une solution encore plus précise. Dans les sections 5.3 et 5.4,
nous présentons un algorithme de segmentation basé sur le Fast-Marching et la mise
en oeuvre d’un algorithme combinant nos deux méthodes en une seule.

Abstract — Despite its advantages, level-set modelization suffers from several
drawbacks compared with explicit and parametric models.
No local deformations are implemented, and in section 5.1, we introduce several
techniques to include interactivity in the traditional Level-Sets framework. We
also derive variations of the region-based forces, which will be much useful for our
segmentation applications.
A large number of computations is often needed to solve the variational equations
involved in the Level-Sets model. Using the Fast-Marching as a segmentation tool,
we are going to initialize Level-Sets with a pre-segmentation near the solution,
where only a few iterations are needed to converge to a sub-pixel accurate solution.
In section 5.3 and 5.4, we present the collaboration of Fast-Marching and Level-Sets

in a single segmentation framework.

102 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

5.1 Interactive Segmentation with the Level-Sets

Framework

In medical imaging no automatic method is known to be generally applicable, com-
pletely reliable and robust. As a consequence, interaction is a part of many seg-
mentation procedure to be combined to the automated segmentation process. No
interactions were introduced in level-sets models, and the effect of the parameters on
the model is often non-intuitive, as shown in figure 5.1.

Figure 5.1. Failed segmentation with Level-Sets paradigm - Left image: The
gradient influence is too important, and the level-sets is attracted by any spurious
edges (vessels and arteries in the lungs); middle image: the curvature forces being
too important, the inflation force is unable to reach the edges of the left ventricle;
on the lung image the edges are now not sufficiently valued in order to stop inflation
into the liver which surrounds the lung.

5.1.1 Interactivity requirements for the level-sets paradigm

As emphasized by most of the comparative study of explicit and implicit deformable
models, and particularly in the PhD thesis of J. Montagnat [120], the formalism of
the Level-Sets implicit representation restricts severely user interactivity.

The interactive requirements, when an automatic method fails, can be classified
in different categories, like

• unseen evidence: the user perceive an edge where the automatic method does
not (when the object intensity does not fit). In this case, the method should offer
a regionally different edge defining operation or a regional parameter tuning (all
examples in figure 5.1 are cases of unseen evidence);

• absence of evidence: neither the user nor the automatic method observe an
edge. Interaction should imply a nullification of the evidence from the data in
the region;

• dislocated evidence: the automatic method has found proof of an object accord-
ing to the object model, but has confused the object with a neighboring object.

5.1 Interactive Segmentation with the Level-Sets Framework 103

Interaction should confine the admissible contours to the indicated zone.

The definition of the correct interactivity framework is more than a difficult task,
maybe more than the settle of an automatic method for medical imaging problems.
The tremendous work of S. Olabarriaga [133, 134] on the subject settled the basis for
a general interactive segmentation framework, but solutions surely lie in dedicated
approaches to specific problems.

Simple interactions have been implemented in 2D for tests. They are based on
modifications of the data or the model, which are two cases to answer the problems
of unseen evidence and absence of evidence.

5.1.2 Fixing a point of the contour

This force will attract the zero level-set of φ to a user defined point. If we apply the
classical evolution equation (4.5) of [135], with an added external force to the point
x0:

φt + F̃ |∇φ| = φt + F |∇φ|+ Fx0
|∇φ| = 0 (5.1)

with the external force compute at each pixel x by

Fx0
(x) = d(x0;x) (5.2)

This force is applied to the nearest voxels of x0 (in a user-chosen neighborhood), on
the zero level-set. In order to compute F for an undefined number of fixed point
{x0, . . .xN} in equation (5.2), we use the Fast-Marching algorithm, detailed in chap-
ter 1, as explained in table 5.1. Figure 5.2 represents iterations of the evolution

Algorithm for Computing Interactivity Force F
at iteration i, let {x0, . . . ,xN} be the N user defined fixed points, and N action
maps U0, . . . , UN . For j ∈ [1;N]:

• Uj(xj) = 0, and Uj(x) = ∞ elsewhere;

• propagate a front by computing action map Uj with ‖∇Uj‖ = 1 using Eikonal

equation (1.6);

• stop when visiting a pixel y where φ sign changes.

The additional force F is given by F(x) = minj∈[1;N] Uj(x) if x has been visited,

in other case F(x) = 0.

Table 5.1. Fast-Marching for Computing external forces

process with On-The-Fly user interaction of a Level-Sets initialized by the distance
to a circle, and using as evolution equation:

φt + Fx0
|∇φ| = 0 (5.3)

where F = F in equation (5.1). Several comments can be added to this algorithm:

104 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

Figure 5.2. Fixing a point of the contour: these images represent the defor-
mation of the zero level-set of φ, when fixing different points of the contour. The
zero level-set extracted is represented in red, and is super-imposed to the external
force F in equation 5.2

• choosing F(x) = minj∈[1;N] Uj(x) instead of maxj∈[1;N](Uj(x) in table 5.1, is
just a matter of convention. The force applied is not directional, because the
evolution of the curve is in its normal direction and do not integrate any tan-
gential term. Therefore, the zero level-set is not attracted more or less by two
neighboring pixels, and this is just the intensity of this force that can be tuned;

• concerning the different action maps U0, . . . , UN , they can be integrated in only
one action map U , according to the previously mentioned convention. This can
greatly reduce the computing cost of N float images, for each action map. This
is easily handled by taking the minimum of the different actions, because the
Fast-Marching algorithm has been built on this minimality principle. It was the
method used in figure 5.2.

5.1.3 Re-initializing the contour

The interaction we study now is a re-initialization of the contour, on the model of
the Convolution surface developed in [14], for implicit function modeling in computer
graphics (see [13]). A convolution is a modification of a signal by a filter; here the
skeleton is the signal and the filter is a Gaussian kernel. More than a deformation
process, this is a re-initialization of the model.

Considering our function φ defined on a small narrow-band, as done by Whitaker

[184], with its Sparse-Fields method the level-set function is close to a binary image, as
shown in figure 5.3. Defining a point x0 for the interaction, we compute its distance
to the zero level-set, and its corresponding nearest point x1 on this zero level-set.
In our 2D example, the segment [x0,x1] is the skeleton that we convolved with a

5.1 Interactive Segmentation with the Level-Sets Framework 105

Figure 5.3. Re-initializing the contour: The initial contour which evolves
according to an equation of the form φt + κ|∇φ| = 0 is deformed by convolution.
Different steps show the curvature motion that shrinks the obtained closed curve,
as explained in [70].

Gaussian kernel. We built a function F that for any point p on the image domain
gives

F(p) = a

(
∫ x1

x0

e−‖p−u‖2/2bdu− 1/2
)

(5.4)

that can be approximated by

F(p) = a

(

∑

i

e−‖p−xi‖2/2b − 1/2
)

(5.5)

where xi are the points on the skeleton, and a, b are positive constants to control the
amplitude and sharpness of the convolved object. Then we apply F by reconstructing
the new function ϕ defined by the two regions:

• ϕ− = φ−1(IR−) ∪ F−1(IR−)

• ϕ+ = φ−1(IR+) ∩ F−1(IR+)

where

• if x ∈ ϕ−, ϕ(x) = max(φ(x),F(x));

• if x ∈ ϕ+, ϕ(x) = min(φ(x),F(x)).

Applying this method to φ, we modify the zero level-set as done in figure 5.3. This
implementation of a re-initialization is rather similar to the method proposed in [141].

106 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

5.1.4 Conclusion on the interactivity

We have shown two possible interactivity techniques, based on a modification of the
data, and on a modification of the model, both based on computer graphics ideas.
Basically, a lot of techniques first studied for computer graphics can be applied to
the Level-Sets which basis is an implicit representation. The implicit representation
in computer graphics (see [13]) has much in common with the formalism developed
in [135]. It was even studied by Cani and Desbrun in [19] and detailed in [41], with
a Level-Sets implementation for a “skin” that contains spherical particles for the
simulation of highly deformable models. But in Computer Graphics, first matter is the
rendering of animations, and not their computing costs. Unfortunately, interactivity
requires a direct and fast output of any user interaction, which is something that is
still difficult to manage with the Level-Sets paradigm.

But the solution probably lies in the combination of two different techniques: one
for segmentation, and one for interaction. A very good example of this philosophy can
be found in [188]: the authors use circular oriented particles to sample and control
implicit surfaces. This technique is also used by Szeliski et al. [171]. The model is
a force-feedback system where particles try to match the zero level of the implicit
function, and where the surface follows particles. A simple constraint locks the set
of particles onto a surface while the particles and the surface move. The particles
use mutual repulsive forces and fissioning to sample the whole surface, and the user
interactivity can be applied locally on one particle at a time, using them as control
points for direct manipulation, as shown in figure 5.41. Finally, very interesting work

Figure 5.4. Interactivity on an implicit surface : the particles track the
implicit surface, leading to an easy visualization of its zero level-set, and at the
same time input a control on this surface, in order to modify its shape.

has been done on the construction of subjective contours in [154], where the Level-

Sets extracts contours in famous test images of Kanizsa [81] that strongly requires
image completion.

1We would like to acknowledge Andrew Witkin and Paul Heckbert, for providing this sequence
that is an illustration of their article [188].

5.2 Region Based Forces 107

5.2 Region Based Forces

5.2.1 Gaussian descriptors

We recall the descriptors first introduced by Zhu and Yuille [196]. They are “fully
automatic” in the sense that no user-defined parameter is necessary to their definition.
They are based on region probabilities defined by Gaussian distributions:

Pin(x, t) =
1√

2π σin(t)
exp(− (I(x)− µin(t))

2

2σ2in(t)
)

A similar expression is used for the definition of Pout(x, t). Here µin(t) and σ
2
in(t) are

respectively the mean and the variance of the image intensity over Ωin(t):

µin(t) =

∫

Ωin(t)
I(x) dx

∫

Ωin(t)
dx

, σ2in(t) =

∫

Ωin(t)
(I(x)− µin(t))

2 dx
∫

Ωin(t)
dx

This means that the histograms of the intensity in Ωin(t) and Ωout(t) are modeled by
Gaussian distributions.

5.2.2 Modified Gaussian descriptors

The preceding model has one major drawback: if one of the variances is much smaller
than the other one, then undesired results can be observed. For example, if the image
is composed of a bright region with a small variance (a contrast-enhanced organ for
instance) in the middle of a dark background with a large variance, then very bright
pixels may have a greater probability to be in the background than in the bright
region. This is perfectly normal from the point of view of the Gaussian model, but it
is in contradiction with our a priori knowledge about the image informational content.
In other words, the Gaussian model may be unadapted to some images.

In such cases, we can introduce an priori knowledge by modifying the two Gaussian
distributions. If we know that the image region that we want Ωin(t) to cover is
supposed to be brighter than the one covered by Ωout(t), then we take:

Pin(x, t) =

{

1√
2π σin(t)

exp(− (I(x)−µin(t))
2

2σ2
in(t)

) if I(x) < µin(t)
1√

2π σin(t)
if I(x) > µin(t)

and:

Pout(x, t) =

{ 1√
2π σout(t)

if I(x) < µout(t)

1√
2π σout(t)

exp(− (I(x)−µout(t))
2

2σ2
out(t)

) if I(x) > µout(t)

It is also possible to manually choose the means and variances instead of comput-
ing them from the region histograms, which can be very useful in some applications
(they can be obtained through an initialization process). In this case, the region
descriptors become time-independent.

108 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

5.2.3 Sigmoid descriptors

For the images where the modified Gaussian model failed, we used user-defined time-
independent sigmoid probabilities. We took:

Pin(x, t) =
1

1 + eain (bin−I(x)) (5.6)

with a similar expression for Pout(x, t). While Gaussian have quadratic logarithms,
sigmoid functions have asymptotic linear logarithms. For example, if ain is positive,
then:

lim
I(x)→+∞

logPin(x, t) = 0

and:
logPin(x, t) ∼I(x)→−∞ ain I(x).

Those descriptors for the aorta of figure 3.12 are shown in figure 5.5.

-16

-14

-12

-10

-8

-6

-4

-2

0

0 50 100 150 200

Aorta vessels descriptors
Background descriptor

Figure 5.5. Sigmoidal region-based forces: they are used for discriminating
the aorta towards the background in figure 3.12.

Figure 5.6 shows iterations of the segmentation of the aorta of figure 3.12 with
sigmoidal region descriptors of figure 5.5.

5.2.4 Numerical implementation of the level-sets paradigm

Adaptive time step

We used an Euler first-order explicit time scheme for solving (4.6). We recall that
explicit time schemes often require a limitation of the time step to be stable. Here it is
possible to control the Courant-Friedrichs-Lewy (or CFL) number2 of the discretized
flow equation, by adapting the time step between each time iteration.

2Number of cells crossed by a characteristic curve during a time step.

5.2 Region Based Forces 109

Figure 5.6. Extracting the aorta with region-based forces: the initialization
is a sphere located inside the aorta object. Using the a priori distribution of the
grey levels inside the aorta and boundary based forces, we segment the aorta, as
shown on the several iterations.

110 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

The only difficulty is related to the scheme associated with the curvature flow,
which has no obvious stability conditions. We have empirically chosen to give a
stronger penalty to its contribution to the global CFL number. Explicitly in 3D, for
a composite flow of the following form:

V = (β(x, t)− ε(x, t)κM (x, t))n+U(x, t)

we ensure that:

max
(i,j,k)

(νβijk + 3 ν
ε
ijk + νUijk) 6 1

where:

νβijk = ∆t |βijk|
√

∆x−2 +∆y−2 +∆z−2

νεijk = ∆t |εijk|
√

∆x−2 +∆y−2 +∆z−2

νUijk = ∆t

(

|Uxijk|
∆x

+
|Uyijk|
∆y

+
|Uzijk|
∆z

)

.

The results are very satisfying, and no numerical instability has been noticed during
the segmentation tests.

Narrow Banding

For reasons of causality, it is possible to restrain the computation domain to a band of
cells around the zero-level set of φ(·, t). The result is a decrease of the computational
cost. Several approaches have already been proposed, but we have build a new one
which is adapted to our segmentation problems.

Classical approaches are referred to as narrow-band methods (see figure 5.7).
Some are based on combinatory studies in order to add or remove cells around φ(0, t)
as it moves (see Adalsteinsson and Sethian [2]). Another approach can be found in
the thesis of Keriven [84], and consists in computing the signed distance function
to φ(0, t) when it gets too close to the boundaries of the band, and re-initializing
φ(·, t) with the computed distance function. Other authors chose to initialize φ with
a distance function and maintain ‖∇φ‖ = 1 at each iteration (see Adalsteinsson and

Sethian [3], and Gomes and Faugeras [68]).
These methods cited above are efficient, especially when the initial condition

φ(·, 0) is far from the solution. Here we propose a new specific method that is very
efficient for the segmentation of fine- to medium-size tubular structures (like arterial,
venous, or bronchial trees), or when using a rough pre-segmentation for initializing φ.

The idea is simple: we start from a distance function, either associated to a
pre-defined geometric primitive, or computed from a binary pre-segmentation by a
fast-marching algorithm (see next chapter). We define a narrow-band area and a
wide-band area around φ(0, 0) = φ0 (the wide-band is larger than narrow-band and
comprises it). The calculations are then performed in every cell of the wide-band
area. If φ(0, t) gets out of the narrow-band area (i.e. the sign of φ changes somewhere

5.2 Region Based Forces 111

Figure 5.7. Narrow Band Diagram: Left image shows the overview of the
narrow-band structure, and right image shows the detail.

Figure 5.8. Narrow Band reconstruction: images are samples of the evolution
and reconstruction of the narrow-band, starting from two circles that merge.

in the outside of the narrow-band area), then both bands are locally enlarged in a
spherical manner.

As a consequence, we can add cells to the computational domain, but we never
remove cells from it. If a pre-segmentation is used, the enlargements of the bands
are few and the resulting computational cost is very small. This method has also
proved to be efficient in the case of propagation in tubular structures with diameters
comparable to the wide-band width (for example 10 times a cell diagonal).

Boundary conditions

We used so-called free boundary conditions, that is to say that we extrapolate the
values of φ(·, t) in the outside vicinity of the computation domain boundaries by taking
the closest value inside the domain, and that the corresponding finite differences are
equal to zero. Some authors use other entropic boundary conditions. The main idea
is that the information that goes out of the computation domain is lost, and that no
information should be introduced into the domain through its boundaries.

112 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

5.3 Using the Fast-Marching for segmentation

Originally introduced byMalladi and Sethian [111], the Fast-Marching can be used as
a fast initialization algorithm for image segmentation. Despite the fact that it requires
low computational cost, it has several drawbacks, in particular that the speed F in
equation (4.20) is always positive or always negative. Therefore, the front evolves and
propagates in the whole image domain, without being stop by any edge, and it cannot
be used for cases with curvature-dependent speed functions. The stopping criterion
still relies on a user perception of the segmentation, like visual inspection of the
domain visited by the algorithm during propagation, or the choice for an appropriate
stopping time, as done in [111]. But the nice segmentation properties of the Fast-

Marching algorithm shall be taken into account, as shown in figure 4.10, where we
segment a brain on the basis of the method described in [111].

Still, the stopping criterion in this case was to visually control the segmentation
process, because the automatic detection of the crossing of the interesting edges is
difficult to implement.

Noticing that Eikonal equation is used to model the continuous formulation of the
watershed transform, we have developed an interactive segmentation tool based on
the flooding process of this morphological algorithm introduced in [180]. It is based on
the same principle that segmentation boundaries are defined by pixels where several
evolving fronts collide.

5.3.1 Comparison with the watershed algorithm

The classical morphological segmentation paradigm [156] is based on the watershed
transform [181]. The method is very simple:

• the gradient image ‖∇I‖ is computed (and enhanced);

• for each object of interest, an inside particle is detected (either interactively or
automatically);

• flooding waves are propagated from the set of markers and flood the topographic
surface ‖∇I‖.

The points where the flooding waves meet each other form the segmentation bound-
aries. Different regions between boundaries are called catchment basins. Usually
markers are the regional minima of the gradient image. An example of the watershed
transform is shown in figure 5.9. Very often, the minima are extremely numerous,
leading to an over-segmentation, therefore for practical cases, the watershed trans-
form will take as seed points a smaller set of markers, identified through pre-processing
techniques.

The flooding waves are propagated according to the topographic map ‖∇I‖, where
the pixels belonging to a catchment basin are nearer to its corresponding regional
minimum than to any other minima. In this framework, the construction of catchment
basins can be seen as a shortest path problem between a marker and the image
points. It corresponds to compute the gray-weighted distance transform (GWDT) of
the image to the set of markers. There are several ways to compute this GWDT :

5.3 Using the Fast-Marching for segmentation 113

Figure 5.9. Watershed transform of a 2D X Ray image of the heart (LV):
The seed points are regional minima of the gradient of image 5.9-left; the flooding
was implemented in the continuous framework of Eikonal equation , and the regional
minima were filtered in order to have a smaller set of markers.

as shown in [118], viewing the topographic image domain as a refractive index, as
explained in chapter 1, the distance between a marker and any point in the image is
the line integral of the penalty ‖∇I‖ along the optical path length. We reformulate
Eikonal equation 4.22 with

‖∇T (x)‖ = ‖∇I(x)‖ (5.7)

and the GWDT can be computed on the whole image domain, using the markers as
sources pixels p where T (p) = 0.

Maragos has shown in [118] that the continuous segmentation approach based on
the Eikonal equation outperforms the discrete segmentation results. However several
problems remain important:

• the final segmentation relies on the number of the markers: too many markers
lead to an over segmentation of the image, and merging algorithms are needed
as post-processing;

• it relies also on the quality of the edge detector applied to the real image: if
there is a gap in the edge information, the nearest marker will flood the adjacent
region.

We have devised a very simple method based on user interactivity, and different
front speeds, based on the formulation of the flooding of the whole image. Each
front, initialized by a user-defined seed point, will propagate according to its own
propagation speed, derived from local image information (and not just gradients), and
will stop when it meet other propagating fronts. This method has been implemented
to provide a quick and dirty initialization for the Level-Sets method.

114 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

5.3.2 Interactive segmentation with the Fast-Marching

Flooding algorithm

In the following, we assume that we have an undefined number of seed points for front
propagation, that can be labeled with a known number of labels. We detail below the
flooding algorithm for multi-label front propagation.

Definition

• a set of starting point p1, . . . ,pn, located inside the image domain;

• each starting point pi is assigned a label li i ∈ [1;n] (not necessarily different);

• a label map L, for controlling collision;

• a penalty image P which will drive the front propagation, and which is a function of
the position and the label of the front;

• We initialize the usual set of data-structures for front propagation, including an action
map A and (only) one min-heap structure H;

Initialization

• we initialize a classical front propagation method, setting A(pi) = 0 ∀i ∈ [1;n] and
storing all seed points in the min-heap structure;

• L(pi) = li, L = −1 elsewhere;

Loop: at any iteration

• Let xmin be the Trial point with the smallest action A;

• Move it from the Trial to the Alive set (i.e. Axmin is frozen);

• Update P(L(xmin))

• For each neighbor x (6-connexity in 3D) of xmin:

– If x is Far

1. add it to the Trial set;

2. L(x) = L(xmin)

3. compute A according to equation

‖∇A‖ = P (L(xmin)) (5.8)

using the up-wind discretization scheme, involving only the neighbors of x
with label L(xmin);

– If (x) is Trial

1. recompute the action A(x) with equation(5.8), involving only the neighbors
of x with label L(xmin);

2. if the new value is smaller, then L(x) = L(xmin)

Termination

• stop when all pixels on the image domain are visited;

• the label map L represents the final segmentation into k regions Rk.

5.3 Using the Fast-Marching for segmentation 115

In this algorithm, we have deliberately left blank the update procedure of the
potential. Using a very simple potential based on the grey level information. Having
the n seed points p1, . . . ,pn, we can set at initialization

if L(x) = L(pi) , P(x) = max(I(x)− I(pi), 0) + w (5.9)

Then the speed is inversely proportional to the difference between the grey-level of
the starting seed point and other points in the image. Result of this strategy can
be observed in figure 5.10 where different seed points were manually located on the
image 5.10-left, leading to the segmentation of figure 5.10-right. The resulting is not

Figure 5.10. Front competition on a 2D X Ray image of the heart (LV):
The seed points were manually located on the dataset on the left image; they are
visible as white dots on the right image.

convincing, but the use of this kind of information to differentiate the different front
speeds has a bigger potential than the classical watersheds formulation. If there is a
gap in the gradients between two basins, one of the two fronts could flood completely
into the adjacent basin with the watersheds, whereas the speed in the adjacent region
could still be discriminating the unwanted flooding, in the case of our competitive
fronts algorithm. This is mainly the difference between a difference of a plateau and a
barrier in the penalty (where plateau is a region with small variations in the intensity).

Thus, different strategies can be implemented, as many as there are different
possible potentials.

Setting the penalty information

We can devise a very simple algorithm that do not use the information coming from
the seed points, but for the m first visited voxels for each label. This reduces greatly
the influence of the user interaction in setting the markers position. Therefore for
each label,

• At iteration i in the Fast-Marching we examine the point x in the min-heap whose
action is minimal;

• We remove it from the heap and we examine its label l = L(x) and its grey level I(x);

116 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

• For the front points with label l, we know Nl the number of points considered and µl

the mean grey level value of those points;

• if Nl < m, we update this mean grey level value for the label l

µl = (Nl ∗ µl + I(x))/(Nl + 1) , Nl ++ (5.10)

• considering that the image grey level of the pixel in the desired region are a random
distribution of mean µl we can also update the variance with Koenig-Huyghens formula
σ2

l [X] = µl[X
2]− µl[X]2 for the random variable X;

• we use this new mean values µl and σl in the computations of the action at each
neighbors of x.

In figure 5.11 is shown an example of using this strategy for setting the penalty
term. The speed function in the image shown is computed with m = 10 for all

Figure 5.11. Front competition on a 2D scanner slice of the lungs: The
seed points were manually located on the dataset on the left image; they are visible
as white dots on the right image.

labels. The speed function for each label l is computed with the penalty P(x) =
e−|I(x)−µl|/2σ2

l .
Unfortunately, this algorithmic trick makes the penalty a time-dependent func-

tion, and thus the minimality principle is violated, and Eikonal equation discretization
cannot be applied in theory during the iterations where P = P(x, t). Therefore, this
heuristic must be seen as a region growing algorithm to operate a statistical study at
the beginning of the segmentation process before visiting the whole image domain. It
can also be replaced by a similar statistical study in a sphere around the seed points.

Figure 5.12 displays the result of the same strategy on the brain dataset used for
test in figure 4.10. This result was obtained by setting different seed points in the
different objects in the brain MR image which is represented on the left column of
figure 5.12. Each one of the regions was initialized with one marker, and they are
represented when all fronts collide super-imposed on three orthogonal views of the
dataset in the left column of figure 5.12. Inconvenient of this kind of segmentation
is that it assumed that the correct number of classes is known a priori and that the
user can clearly indicate to the algorithm the location of each connected components

5.3 Using the Fast-Marching for segmentation 117

Figure 5.12. Front competition result on the brain: Simultaneous segmenta-
tion of the white and grey matter of the brain, plus the skull and the skin; each row
corresponds to a region, and the intersection between the regions and the datasets
is represented in pink, in the left column.

of this class. But target here is to provide a quick and dirty initialization to a more
complex and time consuming method (like Level-Sets).

The same test was done on a lung image, where we try to separate the airways
from the soft tissue and vessels, in figure 5.13. Results The underlying dataset is a
volume-of-interest extracted from a multi-slice CT scanner of the lungs. The dataset,
almost isotropic, contains a huge number of pixels, and even a fast algorithm like ours
is not able to achieve this result in “interactive time”. But we have shown the ability
of this simple algorithm to achieve difficult segmentation tasks.

Further, in this algorithm, there is no need to use several data-structures (like
min-heap) to store each different front. Due to the minimality principle of the Fast-

118 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

Figure 5.13. Front competition result on the lungs: separating air and soft
tissues in a multi-slice CT dataset of the Lungs; seed points are manually located in
the different parts of the image (on in the airways, on in the tissues, and on outside
the object).

Marching construction, the point with minimum energy, independently from its label,
will still be at the root of the min-heap data-structure. And each point of the image
will be visited only one time, leading to approximately the same computing cost than
the propagation of a single front in the image domain. It seems that a similar version
of the multiple front propagation algorithm has been developed in [103, 167], for
initializing color and texture segmentation with the Level-Sets methods.

5.4 Combining Fast-Marching and Level Sets

5.4.1 Advantages and Drawbacks of Fast-Marching

The Fast-Marching algorithm is used for the computation of a minimal action map,
or weighted distance transform (from the morphological point of view).

Drawbacks : monotonicity of the speed (can only propagate in one direction), no
control of the curvature of the contour to be extracted, no stopping criterion (speed
always strictly positive/negative).

Advantages

• It is a very fast algorithm (as shown in the case of path extraction for virtual
endoscopy in chapter 3);

• it can segment objects with complex topologies (see the brain example in fig-
ure 4.10);

5.4 Combining Fast-Marching and Level Sets 119

• it can be used with simple initialization of seed points (see the competitive front
segmentation of figure 5.12);

• There are lots of Penalty definition (depending on user’s imagination, rang-
ing from grey-levels to Hessian measures [60], and other complicated measured
obtained through filtering).

• it can be used for initialization: Figure 5.14 shows images of the conversion from
an implicit representation of the object, to an explicit model.

Figure 5.14. Combining Fast-Marching with Explicit Methods : the first
three images are samples of the segmentation process described in section 5.3; the
right image is the conversion of the implicitly defined model into a simplex mesh.

Drawbacks

• Monotonicity of the speed (can only propagate in one direction);

• No Curvature term in the Energy of the contour to be extracted;

• No stopping criterion (Speed always strictly positive/negative).

5.4.2 Advantages and Drawbacks of Level-Sets

Level-Sets implementation allows to evolve embedded curves with wide variety of
force models, and lead to high-accuracy segmentations with sub-pixel precision. But
they often use time-consuming iterative approaches. They have always been criticized
because of their computational cost. For instance being used for the segmentation
of the cortex (see for example Zeng et al. [195]), they provide very satisfying results,
but several hours of computation are needed. Several implementations try to override
this problem.

The speed of the algorithm has been increased with the use of semi-implicit dis-
cretization schemes by Goldenberg et al. [65, 67]. This method is based on the im-
plementation of a semi-implicit discretization scheme originally applied to non-linear
diffusion filtering [182]. Only drawback is the assumption that the slope of the Level-

Sets guarantees ‖∇φ‖ = 1 across iterations, with an evolving equation based on the

120 5 Several Segmentation Techniques involving Level-Sets and Fast-Marching

formulation of [23]. This condition is not met with the Level-Sets formulation, but
another model developed in [69] overcomes this drawback.

An interesting algorithm was derived in [137]: the Hermes algorithm is based on
the idea to propagate the pixel that evolves faster at each step, thus combining the
Narrow-Band and Fast-Marching approach, with propagation over a relatively small
window. However, the proposed algorithm does not solve exactly the given partial
differential equation since the evolution is computed locally, and this acceleration step
is not valid in an homogeneous media, where the whole curve is propagating with the
same speed (as shown for a pure advection flow in figure 4.6).

5.4.3 Combining two complementary methods

In the domain of medical image analysis, time-consuming algorithms are synonymous
with non-interactive methods, and are therefore limited to a very small number of
specific applications. In others words, the computation times of level sets are an
obstacle to a wider use of these methods. The strategy we used is an original approach
which tries to go beyond this classical barrier.

Both methods have a common advantage : they have no constraints or hypothesis
on topology, which may change during convergence.

Our segmentation strategy will consist in using Fast-Marching method as a pre-
segmentation tool, and then refine the segmentation with a level set method. This ap-
proach combines the advantages of both methods: the fast-marching pre-segmentation
is rough but quick, and the level set needs only a few iterations to produce the final,
highly accurate segmentation.

By combining fast-marching and level sets, we build a tool which is able to produce
highly accurate segmentations of topologically and geometrically complex structures
in minutes where level sets alone took hours. The framework is the following

Fast-Marching will provide a fast and rough initialization, near the solution. As a
second process it will give a statistical study of the pre-segmentation (for the level-sets
forces): looking at the local distribution of the different regions extracted with the
competitive front, we are able to give the initial values of the region descriptors. Com-
puting the mean and variance of different regions, we can skip the MDL statistical
study and assume that those values are the original first and second moments of the
Gaussian probabilities in section 5.2. And Level-Sets will start from the segmentation
step achieved by Fast-Marching . In a few iterations, they will converge with more
complex external forces, including region-based terms as in sections 4.4 and 5.2. Their
particular formulation will lead to an accurate position of the sub-pixel iso-surface,
that enhances visualization and measurements of pathologies.

